Carl Schreck¹, Jared Rennie¹, Lance Watkins^{2,3}, Kelly Dobeck^{2,4}, and Derek Podowitz^{2,5} ¹Cooperative Institute for Climate and Satellites – North Carolina (CICS-NC), ²NASA/NOAA DEVELOP, ³Arizona State University, ⁴University of North Carolina Asheville, ⁵Fleet Numerical Meteorology and Oceanography Center

Question

Which teleconnections have the strongest association with U.S. temperatures at different time scales?

Data & Methodology

Temperature Data

- GHCN-daily data aggregated to climate divisions and then to states
- NCEI U.S. Normals used to produce daily anomalies

Time Scales

- 5-day running average (pentads) to eliminate day-to-day variability
- 100-day lowpass filter identifies seasonal signals
- 100-day highpass filter identifies subseasonal signals

Teleconnections

- **EPO:** East Pacific Oscillation
- MVP: Multivariate Pacific North American (PNA)
- AO: Arctic Oscillation
- **ONI:** Oceanic Niño Index
- RMM1/2: Real-time Multivariate Madden-Julian Oscillation (MJO)

Conclusions

- **EPO dominates total and** subseasonal
- MVP/PNA is a major player at all time scales
- AO is primarily low-frequency
- MJO beats out AO at subseasonal scales

